Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-560570x-275801727\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-560570xz^2-275801727z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-8969115x-17660279626\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(20551/9, 2715527/27)$ | $5.4114775518393871396464946900$ | $\infty$ |
| $(3707/4, -3711/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 5202 \) | = | $2 \cdot 3^{2} \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-21620410871500869192$ | = | $-1 \cdot 2^{3} \cdot 3^{18} \cdot 17^{8} $ |
|
| j-invariant: | $j$ | = | \( -\frac{1107111813625}{1228691592} \) | = | $-1 \cdot 2^{-3} \cdot 3^{-12} \cdot 5^{3} \cdot 17^{-2} \cdot 2069^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4046065829895003493815612276$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.43869376662733746355917130020$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0188378451820035$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.123148445438274$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.4114775518393871396464946900$ |
|
| Real period: | $\Omega$ | ≈ | $0.083606317888607974242055922747$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 3\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.4292045493537980713523928974 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.429204549 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.083606 \cdot 5.411478 \cdot 48}{2^2} \\ & \approx 5.429204549\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 110592 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $3$ | $4$ | $I_{12}^{*}$ | additive | -1 | 2 | 18 | 12 |
| $17$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.5 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 408 = 2^{3} \cdot 3 \cdot 17 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 10 & 3 \\ 177 & 400 \end{array}\right),\left(\begin{array}{rr} 127 & 406 \\ 282 & 395 \end{array}\right),\left(\begin{array}{rr} 397 & 12 \\ 396 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 18 & 97 \\ 221 & 290 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 358 & 399 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 167 & 396 \\ 186 & 335 \end{array}\right)$.
The torsion field $K:=\Q(E[408])$ is a degree-$60162048$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/408\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 2601 = 3^{2} \cdot 17^{2} \) |
| $3$ | additive | $2$ | \( 289 = 17^{2} \) |
| $17$ | additive | $162$ | \( 18 = 2 \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 5202h
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 102c2, its twist by $-51$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-51}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.83232.1 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-51})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.12778713.1 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.443364212736.18 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.28375309615104.85 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.6927565824.2 | \(\Z/12\Z\) | not in database |
| $12$ | 12.0.1469659553427321.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.55060149171099465666554346840051.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | ss | ord | ss | ord | add | ord | ord | ss | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 6 | - | 3,1 | 1 | 1,1 | 1 | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 1 | - | 0,0 | 0 | 0,0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.