Properties

Label 51984bo
Number of curves $4$
Conductor $51984$
CM \(\Q(\sqrt{-3}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 51984bo have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 51984bo has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 51984.2.a.bo

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{7} - 2 q^{13} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 51984bo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
51984.bq4 51984bo1 \([0, 0, 0, 0, 6859]\) \(0\) \(-20323820592\) \([2]\) \(24192\) \(0.65680\) \(\Gamma_0(N)\)-optimal \(-3\)
51984.bq2 51984bo2 \([0, 0, 0, -5415, 150898]\) \(54000\) \(325181129472\) \([2]\) \(48384\) \(1.0034\)   \(-12\)
51984.bq3 51984bo3 \([0, 0, 0, 0, -185193]\) \(0\) \(-14816065211568\) \([2]\) \(72576\) \(1.2061\)   \(-3\)
51984.bq1 51984bo4 \([0, 0, 0, -48735, -4074246]\) \(54000\) \(237057043385088\) \([2]\) \(145152\) \(1.5527\)   \(-12\)