Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-620460x-188113104\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-620460xz^2-188113104z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-620460x-188113104\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(5076310/289, 11425560832/4913)$ | $12.173207410142137524891005056$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 5184 \) | = | $2^{6} \cdot 3^{4}$ |
|
| Discriminant: | $\Delta$ | = | $-17832200896512$ | = | $-1 \cdot 2^{25} \cdot 3^{12} $ |
|
| j-invariant: | $j$ | = | \( -\frac{189613868625}{128} \) | = | $-1 \cdot 2^{-7} \cdot 3^{3} \cdot 5^{3} \cdot 383^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8583949940516129916543110514$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.27993806545641466386678236771$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1259568215438134$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.03603975791772$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $12.173207410142137524891005056$ |
|
| Real period: | $\Omega$ | ≈ | $0.085053285457144159536686977062$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.1414851391353671351557866494 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.141485139 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.085053 \cdot 12.173207 \cdot 4}{1^2} \\ & \approx 4.141485139\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 24192 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{15}^{*}$ | additive | 1 | 6 | 25 | 7 |
| $3$ | $1$ | $II^{*}$ | additive | 1 | 4 | 12 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2G | 8.2.0.1 |
| $3$ | 3B | 3.4.0.1 |
| $7$ | 7B | 7.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \), index $768$, genus $21$, and generators
$\left(\begin{array}{rr} 281 & 392 \\ 112 & 393 \end{array}\right),\left(\begin{array}{rr} 73 & 402 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 426 \\ 42 & 253 \end{array}\right),\left(\begin{array}{rr} 39 & 62 \\ 56 & 303 \end{array}\right),\left(\begin{array}{rr} 1 & 216 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 462 & 1 \end{array}\right),\left(\begin{array}{rr} 337 & 168 \\ 336 & 169 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 168 & 1 \end{array}\right),\left(\begin{array}{rr} 419 & 462 \\ 315 & 461 \end{array}\right),\left(\begin{array}{rr} 295 & 42 \\ 231 & 211 \end{array}\right),\left(\begin{array}{rr} 22 & 321 \\ 189 & 169 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 420 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 168 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 463 & 282 \\ 420 & 295 \end{array}\right)$.
The torsion field $K:=\Q(E[504])$ is a degree-$15676416$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/504\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 81 = 3^{4} \) |
| $3$ | additive | $2$ | \( 64 = 2^{6} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3, 7 and 21.
Its isogeny class 5184a
consists of 4 curves linked by isogenies of
degrees dividing 21.
Twists
The minimal quadratic twist of this elliptic curve is 162c3, its twist by $-24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-6}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.648.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.3359232.4 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.1492992.4 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.56458612224.1 | \(\Z/7\Z\) | not in database |
| $6$ | 6.0.40310784.2 | \(\Z/6\Z\) | not in database |
| $12$ | 12.2.5777633090469888.3 | \(\Z/4\Z\) | not in database |
| $12$ | 12.0.20061226008576.9 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | 12.0.6499837226778624.48 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | 12.0.28688174048340020035584.4 | \(\Z/21\Z\) | not in database |
| $18$ | 18.0.704926469821837538733689143296.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.2.28297461724253869811171328.1 | \(\Z/6\Z\) | not in database |
| $18$ | 18.0.11517827512958929223747041688027136.1 | \(\Z/14\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ss | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | 1,7 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | - | 0,0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.