Properties

Label 51744.bb
Number of curves $4$
Conductor $51744$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 51744.bb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 51744.bb do not have complex multiplication.

Modular form 51744.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + q^{9} + q^{11} - 2 q^{13} - 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 51744.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51744.bb1 51744v4 \([0, -1, 0, -2535472, -1553102648]\) \(29925549856274696/4851\) \(292206233088\) \([2]\) \(491520\) \(2.0440\)  
51744.bb2 51744v3 \([0, -1, 0, -182737, -16291295]\) \(1400416996672/570715299\) \(275022168932560896\) \([2]\) \(491520\) \(2.0440\)  
51744.bb3 51744v1 \([0, -1, 0, -158482, -24222680]\) \(58465284603328/23532201\) \(177186554588736\) \([2, 2]\) \(245760\) \(1.6974\) \(\Gamma_0(N)\)-optimal
51744.bb4 51744v2 \([0, -1, 0, -134472, -31838652]\) \(-4464412682696/4706920449\) \(-283527415759053312\) \([2]\) \(491520\) \(2.0440\)