Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2+9964039x+4694204441\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z+9964039xz^2+4694204441z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+159424629x+300588508870\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-1845/4, 1841/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 51714 \) | = | $2 \cdot 3^{2} \cdot 13^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $-72841500317455117762176$ | = | $-1 \cdot 2^{7} \cdot 3^{22} \cdot 13^{7} \cdot 17^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{31091549545392623}{20700995942016} \) | = | $2^{-7} \cdot 3^{-16} \cdot 7^{3} \cdot 13^{-1} \cdot 17^{-2} \cdot 29^{3} \cdot 1549^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0756407892198912654525115850$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.2438599661550680517281452458$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0059757193751666$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.524224603525925$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.068570467462751426947401799982$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 224 $ = $ 7\cdot2^{2}\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $3.8399461779140799090545007990 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.839946178 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.068570 \cdot 1.000000 \cdot 224}{2^2} \\ & \approx 3.839946178\end{aligned}$$
Modular invariants
Modular form 51714.2.a.t
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4816896 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
| $3$ | $4$ | $I_{16}^{*}$ | additive | -1 | 2 | 22 | 16 |
| $13$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
| $17$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1768 = 2^{3} \cdot 13 \cdot 17 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1226 & 1 \\ 271 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1548 & 225 \\ 1105 & 664 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1765 & 4 \\ 1764 & 5 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 883 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 105 & 4 \\ 210 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[1768])$ is a degree-$262787825664$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1768\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 1521 = 3^{2} \cdot 13^{2} \) |
| $3$ | additive | $8$ | \( 5746 = 2 \cdot 13^{2} \cdot 17 \) |
| $7$ | good | $2$ | \( 25857 = 3^{2} \cdot 13^{2} \cdot 17 \) |
| $13$ | additive | $98$ | \( 306 = 2 \cdot 3^{2} \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 51714.t
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 1326.e2, its twist by $-39$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-26}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.2.1082016.1 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.12662925279952896.118 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 13 | 17 |
|---|---|---|---|---|---|---|
| Reduction type | split | add | ord | ord | add | split |
| $\lambda$-invariant(s) | 4 | - | 0 | 2 | - | 1 |
| $\mu$-invariant(s) | 1 | - | 0 | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.