Show commands: SageMath
Rank
The elliptic curves in class 5160e have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 5160e do not have complex multiplication.Modular form 5160.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 5160e
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5160.i3 | 5160e1 | \([0, 1, 0, -76, -160]\) | \(192143824/80625\) | \(20640000\) | \([2]\) | \(1536\) | \(0.10053\) | \(\Gamma_0(N)\)-optimal |
5160.i2 | 5160e2 | \([0, 1, 0, -576, 5040]\) | \(20674973956/416025\) | \(426009600\) | \([2, 2]\) | \(3072\) | \(0.44711\) | |
5160.i1 | 5160e3 | \([0, 1, 0, -9176, 335280]\) | \(41725476313778/17415\) | \(35665920\) | \([2]\) | \(6144\) | \(0.79368\) | |
5160.i4 | 5160e4 | \([0, 1, 0, 24, 15600]\) | \(715822/51282015\) | \(-105025566720\) | \([2]\) | \(6144\) | \(0.79368\) |