Properties

Label 5160.d
Number of curves $1$
Conductor $5160$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 5160.d1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(43\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5160.d do not have complex multiplication.

Modular form 5160.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{7} + q^{9} + 5 q^{11} - 5 q^{13} + q^{15} + q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 5160.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5160.d1 5160j1 \([0, -1, 0, 399549679, 2496643493445]\) \(27554726454844416496885738496/26465717996184551883676875\) \(-6775223807023245282221280000\) \([]\) \(3153920\) \(4.0274\) \(\Gamma_0(N)\)-optimal