Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-2080x-15078\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-2080xz^2-15078z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-33275x-998250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(856/9, 20315/27)$ | $5.3566495650569279006344554764$ | $\infty$ |
| $(-41, 20)$ | $0$ | $2$ |
Integral points
\( \left(-41, 20\right) \)
Invariants
| Conductor: | $N$ | = | \( 51425 \) | = | $5^{2} \cdot 11^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $470570890625$ | = | $5^{6} \cdot 11^{6} \cdot 17 $ |
|
| j-invariant: | $j$ | = | \( \frac{35937}{17} \) | = | $3^{3} \cdot 11^{3} \cdot 17^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.93388329111494666895668632991$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0697833015012887903746651257$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.024323072883995$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.1834351693231904$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.3566495650569279006344554764$ |
|
| Real period: | $\Omega$ | ≈ | $0.74047077431042221866077585881$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.9664424511472897992182419096 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.966442451 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.740471 \cdot 5.356650 \cdot 4}{2^2} \\ & \approx 3.966442451\end{aligned}$$
Modular invariants
Modular form 51425.2.a.m
For more coefficients, see the Downloads section to the right.
| Modular degree: | 46080 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $17$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2B | 32.48.0.12 | $48$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 59840 = 2^{6} \cdot 5 \cdot 11 \cdot 17 \), index $1536$, genus $53$, and generators
$\left(\begin{array}{rr} 15 & 286 \\ 43834 & 53859 \end{array}\right),\left(\begin{array}{rr} 48959 & 0 \\ 0 & 59839 \end{array}\right),\left(\begin{array}{rr} 1 & 64 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 52581 & 49940 \\ 55440 & 58081 \end{array}\right),\left(\begin{array}{rr} 27281 & 45760 \\ 22550 & 40591 \end{array}\right),\left(\begin{array}{rr} 35903 & 0 \\ 0 & 59839 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 64 & 1 \end{array}\right),\left(\begin{array}{rr} 35256 & 6545 \\ 52415 & 35146 \end{array}\right),\left(\begin{array}{rr} 59777 & 64 \\ 59776 & 65 \end{array}\right),\left(\begin{array}{rr} 59 & 10 \\ 15806 & 2679 \end{array}\right)$.
The torsion field $K:=\Q(E[59840])$ is a degree-$2032995926016000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/59840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $5$ | additive | $14$ | \( 2057 = 11^{2} \cdot 17 \) |
| $11$ | additive | $62$ | \( 425 = 5^{2} \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 3025 = 5^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 51425u
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 17a4, its twist by $-55$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-55}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-935}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{17}, \sqrt{-55})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.56543703636640000.8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.676999840000.9 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.220873842330625.9 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | ss | add | ord | add | ord | split | ord | ord | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 6 | 1,3 | - | 3 | - | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 0 | 0,0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.