Properties

Label 51408.bo
Number of curves $3$
Conductor $51408$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 51408.bo have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 51408.bo do not have complex multiplication.

Modular form 51408.2.a.bo

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 4 q^{13} - q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 51408.bo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51408.bo1 51408t3 \([0, 0, 0, -17655840, 27332453808]\) \(838870874148864000/40675641638471\) \(29514006074696590282752\) \([]\) \(3219264\) \(3.0714\)  
51408.bo2 51408t2 \([0, 0, 0, -2838240, -1830361104]\) \(31363160518656000/198257271191\) \(15983812070819647488\) \([]\) \(1073088\) \(2.5221\)  
51408.bo3 51408t1 \([0, 0, 0, -2833920, -1836240208]\) \(22759502184972288000/5831\) \(644861952\) \([]\) \(357696\) \(1.9728\) \(\Gamma_0(N)\)-optimal