Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-160x+2144\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-160xz^2+2144z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-12987x+1524042\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-4, 52)$ | $0.57242506864281623288995047719$ | $\infty$ |
$(100, 988)$ | $0.69825670408635102358277646764$ | $\infty$ |
Integral points
\((-14,\pm 38)\), \((-4,\pm 52)\), \((5,\pm 38)\), \((10,\pm 38)\), \((26,\pm 122)\), \((65,\pm 512)\), \((100,\pm 988)\)
Invariants
Conductor: | $N$ | = | \( 51376 \) | = | $2^{4} \cdot 13^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-1624303616$ | = | $-1 \cdot 2^{11} \cdot 13^{3} \cdot 19^{2} $ |
|
j-invariant: | $j$ | = | \( -\frac{101306}{361} \) | = | $-1 \cdot 2 \cdot 19^{-2} \cdot 37^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.45326128323609976386987638866$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.82336097164256762044262491640$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.7985582934115754$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.656379338761089$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.38929680768066144532276749939$ |
|
Real period: | $\Omega$ | ≈ | $1.3127239746739350331053604950$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.1766280433029179587962366951 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.176628043 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.312724 \cdot 0.389297 \cdot 16}{1^2} \\ & \approx 8.176628043\end{aligned}$$
Modular invariants
Modular form 51376.2.a.k
For more coefficients, see the Downloads section to the right.
Modular degree: | 16128 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{3}^{*}$ | additive | 1 | 4 | 11 | 0 |
$13$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
$19$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 104 = 2^{3} \cdot 13 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 41 & 2 \\ 41 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 53 & 2 \\ 53 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 103 & 2 \\ 102 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 103 & 0 \end{array}\right),\left(\begin{array}{rr} 79 & 2 \\ 79 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[104])$ is a degree-$20127744$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/104\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 13 \) |
$13$ | additive | $50$ | \( 304 = 2^{4} \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 51376g consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 25688j1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.104.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1124864.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ord | ord | ord | add | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 2 | 2 | 2 | 2 | - | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.