Properties

Label 5100.s
Number of curves $1$
Conductor $5100$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 5100.s1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5100.s do not have complex multiplication.

Modular form 5100.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{7} + q^{9} + 3 q^{11} + 2 q^{13} + q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 5100.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5100.s1 5100m1 \([0, 1, 0, -158, -9687]\) \(-1755904/159375\) \(-39843750000\) \([]\) \(2880\) \(0.71361\) \(\Gamma_0(N)\)-optimal