Properties

Label 5100.c
Number of curves $1$
Conductor $5100$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 5100.c1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5100.c do not have complex multiplication.

Modular form 5100.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{7} + q^{9} - 2 q^{11} + 3 q^{13} - q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 5100.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5100.c1 5100c1 \([0, -1, 0, -63333, 6159537]\) \(-11237785600/7803\) \(-19507500000000\) \([]\) \(17280\) \(1.4870\) \(\Gamma_0(N)\)-optimal