Properties

Label 50960.g
Number of curves $4$
Conductor $50960$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 50960.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 50960.g do not have complex multiplication.

Modular form 50960.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - q^{5} + q^{9} + 6 q^{11} - q^{13} + 2 q^{15} + 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 50960.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
50960.g1 50960y3 \([0, 1, 0, -162696, -24299276]\) \(988345570681/44994560\) \(21682442196746240\) \([2]\) \(497664\) \(1.8966\)  
50960.g2 50960y1 \([0, 1, 0, -25496, 1549204]\) \(3803721481/26000\) \(12529147904000\) \([2]\) \(165888\) \(1.3472\) \(\Gamma_0(N)\)-optimal
50960.g3 50960y2 \([0, 1, 0, -9816, 3449620]\) \(-217081801/10562500\) \(-5089966336000000\) \([2]\) \(331776\) \(1.6938\)  
50960.g4 50960y4 \([0, 1, 0, 88184, -92237580]\) \(157376536199/7722894400\) \(-3721587930175897600\) \([2]\) \(995328\) \(2.2431\)