Properties

Label 5096.c
Number of curves $1$
Conductor $5096$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 5096.c1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5096.c do not have complex multiplication.

Modular form 5096.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 2 q^{9} - 2 q^{11} + q^{13} - q^{15} + 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 5096.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5096.c1 5096j1 \([0, -1, 0, -800, 9388]\) \(-235298/13\) \(-3132286976\) \([]\) \(1872\) \(0.57992\) \(\Gamma_0(N)\)-optimal