Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-764x-7324\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-764xz^2-7324z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-990171x-326847690\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-18, 40)$ | $2.5346874369026790221063015835$ | $\infty$ |
$(-21, 10)$ | $0$ | $2$ |
$(31, -16)$ | $0$ | $2$ |
Integral points
\( \left(-21, 10\right) \), \( \left(-18, 40\right) \), \( \left(-18, -23\right) \), \( \left(31, -16\right) \), \( \left(148, 1700\right) \), \( \left(148, -1849\right) \)
Invariants
Conductor: | $N$ | = | \( 507 \) | = | $3 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $7341576489$ | = | $3^{2} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{10218313}{1521} \) | = | $3^{-2} \cdot 7^{3} \cdot 13^{-2} \cdot 31^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.61753462632240826036935064288$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.66494005240836010765739307790$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9140273049268122$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.062106848203631$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.5346874369026790221063015835$ |
|
Real period: | $\Omega$ | ≈ | $0.91712782597107981114680955641$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.1623161892613812728805617993 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.162316189 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.917128 \cdot 2.534687 \cdot 8}{4^2} \\ & \approx 1.162316189\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 336 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$13$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 4.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 156 = 2^{2} \cdot 3 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 53 & 4 \\ 106 & 9 \end{array}\right),\left(\begin{array}{rr} 153 & 4 \\ 152 & 5 \end{array}\right),\left(\begin{array}{rr} 79 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 11 & 154 \\ 0 & 155 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[156])$ is a degree-$2515968$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/156\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 169 = 13^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 169 = 13^{2} \) |
$13$ | additive | $98$ | \( 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 507c
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 39a1, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | 2.2.13.1-117.1-b3 |
$4$ | \(\Q(\sqrt{3}, \sqrt{-13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{39})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.592240896.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.11120967936.3 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.855054733923.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | nonsplit | ord | ord | ord | add | ord | ss | ss | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 1 | 1 | 1 | 3 | 1 | - | 1 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | - | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.