Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2+673x-18351\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z+673xz^2-18351z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+871533x-869260626\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(18, -9)$ | $0$ | $2$ |
Integral points
\( \left(18, -9\right) \)
Invariants
Conductor: | $N$ | = | \( 5070 \) | = | $2 \cdot 3 \cdot 5 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-169420995900$ | = | $-1 \cdot 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 13^{7} $ |
|
j-invariant: | $j$ | = | \( \frac{6967871}{35100} \) | = | $2^{-2} \cdot 3^{-3} \cdot 5^{-2} \cdot 13^{-1} \cdot 191^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.83685725178684216453645295719$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.44561742694392620349029076359$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8907896678438774$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8902784164362605$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.51216506875835561717276800280$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot1\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.0243301375167112343455360056 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.024330138 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.512165 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 1.024330138\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 8064 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$13$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 937 & 4 \\ 314 & 9 \end{array}\right),\left(\begin{array}{rr} 781 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1042 & 1 \\ 1039 & 0 \end{array}\right),\left(\begin{array}{rr} 602 & 1 \\ 479 & 0 \end{array}\right),\left(\begin{array}{rr} 1557 & 4 \\ 1556 & 5 \end{array}\right),\left(\begin{array}{rr} 977 & 586 \\ 584 & 975 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$77290536960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 507 = 3 \cdot 13^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 1690 = 2 \cdot 5 \cdot 13^{2} \) |
$5$ | split multiplicative | $6$ | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
$13$ | additive | $98$ | \( 30 = 2 \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 5070e
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 390e1, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.62400.2 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.90079840281600.66 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.5922408960000.27 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 13 |
---|---|---|---|---|
Reduction type | nonsplit | nonsplit | split | add |
$\lambda$-invariant(s) | 2 | 0 | 3 | - |
$\mu$-invariant(s) | 0 | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.