Properties

Label 50616e
Number of curves $6$
Conductor $50616$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 50616e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(19\)\(1 + T\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 50616e do not have complex multiplication.

Modular form 50616.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - 4 q^{11} - 2 q^{13} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 50616e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
50616.g5 50616e1 \([0, 0, 0, -59754, -4010447]\) \(2022912739489792/574975052397\) \(6706509011158608\) \([2]\) \(212992\) \(1.7435\) \(\Gamma_0(N)\)-optimal
50616.g4 50616e2 \([0, 0, 0, -354999, 78244810]\) \(26511701882112592/1170544394889\) \(218451677151764736\) \([2, 2]\) \(425984\) \(2.0901\)  
50616.g6 50616e3 \([0, 0, 0, 184461, 294999838]\) \(929843593713212/50899738433877\) \(-37996451141935444992\) \([2]\) \(851968\) \(2.4367\)  
50616.g2 50616e4 \([0, 0, 0, -5618379, 5125826230]\) \(26274189238602645028/54802341801\) \(40909728945079296\) \([2, 2]\) \(851968\) \(2.4367\)  
50616.g3 50616e5 \([0, 0, 0, -5556819, 5243639758]\) \(-12709983426958940834/600633986620491\) \(-896741736952500099072\) \([2]\) \(1703936\) \(2.7833\)  
50616.g1 50616e6 \([0, 0, 0, -89894019, 328053223582]\) \(53809458751271244978434/234099\) \(349507934208\) \([2]\) \(1703936\) \(2.7833\)