Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-94721863x+354791200693\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-94721863xz^2+354791200693z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-122759535123x+16554979652556078\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(49606/9, 297211/27)$ | $7.2203156470466075465195246106$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 50430 \) | = | $2 \cdot 3 \cdot 5 \cdot 41^{2}$ |
|
Discriminant: | $\Delta$ | = | $579858882198583723200$ | = | $2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 41^{10} $ |
|
j-invariant: | $j$ | = | \( \frac{7002221518249}{43200} \) | = | $2^{-6} \cdot 3^{-3} \cdot 5^{-2} \cdot 41^{2} \cdot 1609^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.1707977348655349949386707390$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.076154345945278491716367928133$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0099188867762907$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.16095910427081$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.2203156470466075465195246106$ |
|
Real period: | $\Omega$ | ≈ | $0.14559716387383694912706996355$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.2050299219354959371891478111 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.205029922 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.145597 \cdot 7.220316 \cdot 4}{1^2} \\ & \approx 4.205029922\end{aligned}$$
Modular invariants
Modular form 50430.2.a.g
For more coefficients, see the Downloads section to the right.
Modular degree: | 5951232 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$41$ | $1$ | $II^{*}$ | additive | 1 | 2 | 10 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 492 = 2^{2} \cdot 3 \cdot 41 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 247 & 246 \\ 369 & 247 \end{array}\right),\left(\begin{array}{rr} 35 & 0 \\ 0 & 491 \end{array}\right),\left(\begin{array}{rr} 487 & 6 \\ 486 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 42 & 205 \\ 451 & 42 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[492])$ is a degree-$793497600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/492\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 5043 = 3 \cdot 41^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 8405 = 5 \cdot 41^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 10086 = 2 \cdot 3 \cdot 41^{2} \) |
$41$ | additive | $322$ | \( 30 = 2 \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 50430.g
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 50430.j2, its twist by $41$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{41}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.3.20172.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.6.4882915008.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.1955073391875.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.6.16683292944.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.6.125070684606284691917735647466416873456640625.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.30609000133978440700020333483000000000000.5 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | nonsplit | ord | ord | ord | ss | ord | ord | ss | ord | ord | add | ord | ss |
$\lambda$-invariant(s) | 2 | 3 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1,1 | 1 | 1 | - | 1 | 1,1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | - | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.