Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-7389608x-80690243712\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-7389608xz^2-80690243712z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-598558275x-58821391991250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(4888, 0)$ | $0$ | $2$ |
Integral points
\( \left(4888, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 499800 \) | = | $2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $-2786718510752755824000000$ | = | $-1 \cdot 2^{10} \cdot 3^{16} \cdot 5^{6} \cdot 7^{7} \cdot 17^{3} $ |
|
| j-invariant: | $j$ | = | \( -\frac{23707171994692}{1480419781911} \) | = | $-1 \cdot 2^{2} \cdot 3^{-16} \cdot 7^{-1} \cdot 17^{-3} \cdot 18097^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3703810762244623659252487427$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0150843950131344348911659365$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0202278663166926$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.85833179509016$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.035467867228382109197047656907$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 512 $ = $ 2\cdot2^{4}\cdot2^{2}\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $4.5398870052329099772221000841 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 4.539887005 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.035468 \cdot 1.000000 \cdot 512}{2^2} \\ & \approx 4.539887005\end{aligned}$$
Modular invariants
Modular form 499800.2.a.jl
For more coefficients, see the Downloads section to the right.
| Modular degree: | 103809024 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III^{*}$ | additive | -1 | 3 | 10 | 0 |
| $3$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
| $5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $17$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 952 = 2^{3} \cdot 7 \cdot 17 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 121 & 834 \\ 832 & 119 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 949 & 4 \\ 948 & 5 \end{array}\right),\left(\begin{array}{rr} 618 & 1 \\ 167 & 0 \end{array}\right),\left(\begin{array}{rr} 818 & 1 \\ 543 & 0 \end{array}\right),\left(\begin{array}{rr} 477 & 4 \\ 2 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[952])$ is a degree-$20214448128$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/952\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 20825 = 5^{2} \cdot 7^{2} \cdot 17 \) |
| $3$ | split multiplicative | $4$ | \( 9800 = 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
| $5$ | additive | $14$ | \( 19992 = 2^{3} \cdot 3 \cdot 7^{2} \cdot 17 \) |
| $7$ | additive | $32$ | \( 10200 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 29400 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 499800jl
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 2856a1, its twist by $-35$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.