Properties

Label 499800hj
Number of curves $4$
Conductor $499800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 499800hj have rank \(0\).

Complex multiplication

The elliptic curves in class 499800hj do not have complex multiplication.

Modular form 499800.2.a.hj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + 2 q^{13} + q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 499800hj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
499800.hj4 499800hj1 \([0, 1, 0, -865639308, -9894245486112]\) \(-152435594466395827792/1646846627220711\) \(-774999435383557713756000000\) \([2]\) \(212336640\) \(3.9755\) \(\Gamma_0(N)\)-optimal*
499800.hj3 499800hj2 \([0, 1, 0, -13885943808, -629816983340112]\) \(157304700372188331121828/18069292138401\) \(34013346412651827984000000\) \([2, 2]\) \(424673280\) \(4.3221\) \(\Gamma_0(N)\)-optimal*
499800.hj2 499800hj3 \([0, 1, 0, -13921664808, -626413772228112]\) \(79260902459030376659234/842751810121431609\) \(3172765046687241835751712000000\) \([2]\) \(849346560\) \(4.6687\) \(\Gamma_0(N)\)-optimal*
499800.hj1 499800hj4 \([0, 1, 0, -222175094808, -40308067092236112]\) \(322159999717985454060440834/4250799\) \(16003272049632000000\) \([2]\) \(849346560\) \(4.6687\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 499800hj1.