Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-33041161008x-2311708537684512\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-33041161008xz^2-2311708537684512z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2676334041675x-1685227494969884250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-104977, 0)$ | $0$ | $2$ |
Integral points
\( \left(-104977, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 499800 \) | = | $2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $580931460210937500000000000$ | = | $2^{11} \cdot 3^{7} \cdot 5^{18} \cdot 7^{6} \cdot 17^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{1059623036730633329075378}{154307373046875} \) | = | $2 \cdot 3^{-7} \cdot 5^{-12} \cdot 17^{-2} \cdot 179^{3} \cdot 251^{3} \cdot 1801^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.5440370377969299241726786215$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.1309780915389398840204931385$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0554528133897931$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.4225650458044825$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.011197878053553070284148726707$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 112 $ = $ 1\cdot7\cdot2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.2541623419979438718246573911 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 1.254162342 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.011198 \cdot 1.000000 \cdot 112}{2^2} \\ & \approx 1.254162342\end{aligned}$$
Modular invariants
Modular form 499800.2.a.hf
For more coefficients, see the Downloads section to the right.
| Modular degree: | 743178240 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II^{*}$ | additive | -1 | 3 | 11 | 0 |
| $3$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
| $5$ | $4$ | $I_{12}^{*}$ | additive | 1 | 2 | 18 | 12 |
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 288 & 833 \\ 553 & 120 \end{array}\right),\left(\begin{array}{rr} 764 & 721 \\ 343 & 246 \end{array}\right),\left(\begin{array}{rr} 833 & 8 \\ 832 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 834 & 835 \end{array}\right),\left(\begin{array}{rr} 736 & 203 \\ 49 & 78 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 503 & 112 \\ 812 & 447 \end{array}\right),\left(\begin{array}{rr} 599 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \) |
| $3$ | split multiplicative | $4$ | \( 166600 = 2^{3} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
| $5$ | additive | $18$ | \( 19992 = 2^{3} \cdot 3 \cdot 7^{2} \cdot 17 \) |
| $7$ | additive | $26$ | \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 29400 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 499800.hf
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2040.h1, its twist by $-35$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.