Show commands: SageMath
Rank
The elliptic curves in class 49818.p have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 49818.p do not have complex multiplication.Modular form 49818.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 49818.p
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 49818.p1 | 49818k4 | \([1, 0, 1, -89175, -10255484]\) | \(1666957239793/301806\) | \(14198729161086\) | \([2]\) | \(193536\) | \(1.5272\) | |
| 49818.p2 | 49818k3 | \([1, 0, 1, -38635, 2824268]\) | \(135559106353/5037138\) | \(236976594928578\) | \([2]\) | \(193536\) | \(1.5272\) | |
| 49818.p3 | 49818k2 | \([1, 0, 1, -6145, -125824]\) | \(545338513/171396\) | \(8063475819876\) | \([2, 2]\) | \(96768\) | \(1.1807\) | |
| 49818.p4 | 49818k1 | \([1, 0, 1, 1075, -13192]\) | \(2924207/3312\) | \(-155815957872\) | \([2]\) | \(48384\) | \(0.83409\) | \(\Gamma_0(N)\)-optimal |