Properties

Label 49818.p
Number of curves $4$
Conductor $49818$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 49818.p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(19\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 49818.p do not have complex multiplication.

Modular form 49818.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + 2 q^{5} - q^{6} - q^{8} + q^{9} - 2 q^{10} + q^{12} + 2 q^{13} + 2 q^{15} + q^{16} + 2 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 49818.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
49818.p1 49818k4 \([1, 0, 1, -89175, -10255484]\) \(1666957239793/301806\) \(14198729161086\) \([2]\) \(193536\) \(1.5272\)  
49818.p2 49818k3 \([1, 0, 1, -38635, 2824268]\) \(135559106353/5037138\) \(236976594928578\) \([2]\) \(193536\) \(1.5272\)  
49818.p3 49818k2 \([1, 0, 1, -6145, -125824]\) \(545338513/171396\) \(8063475819876\) \([2, 2]\) \(96768\) \(1.1807\)  
49818.p4 49818k1 \([1, 0, 1, 1075, -13192]\) \(2924207/3312\) \(-155815957872\) \([2]\) \(48384\) \(0.83409\) \(\Gamma_0(N)\)-optimal