Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-1933156917x+30595571065116\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-1933156917xz^2+30595571065116z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-30930510675x+1958085617656750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(812904/121, 5628568278/1331)$ | $10.167777160585457887456687678$ | $\infty$ |
| $(121971/4, -121971/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 49725 \) | = | $3^{2} \cdot 5^{2} \cdot 13 \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $57983450542831310564970703125$ | = | $3^{18} \cdot 5^{10} \cdot 13^{3} \cdot 17^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{70141892778055497175333129}{5090453819946781723125} \) | = | $3^{-12} \cdot 5^{-4} \cdot 13^{-3} \cdot 17^{-8} \cdot 5231^{3} \cdot 78839^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.2656094747385306861194372466$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.9115843741874256531214349615$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0203407653878713$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.005642727746946$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $10.167777160585457887456687678$ |
|
| Real period: | $\Omega$ | ≈ | $0.034489062106853751793436621463$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2\cdot1\cdot2^{3} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.6108335676812952061928802089 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.610833568 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.034489 \cdot 10.167777 \cdot 64}{2^2} \\ & \approx 5.610833568\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 46006272 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $4$ | $I_{12}^{*}$ | additive | -1 | 2 | 18 | 12 |
| $5$ | $2$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
| $13$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $17$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1039 & 1240 \\ 100 & 279 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1291 & 1290 \\ 130 & 1531 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 623 & 0 \\ 0 & 1559 \end{array}\right),\left(\begin{array}{rr} 1516 & 625 \\ 215 & 6 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1554 & 1555 \end{array}\right),\left(\begin{array}{rr} 1291 & 40 \\ 530 & 981 \end{array}\right),\left(\begin{array}{rr} 1553 & 8 \\ 1552 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$19322634240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \) |
| $3$ | additive | $6$ | \( 425 = 5^{2} \cdot 17 \) |
| $5$ | additive | $18$ | \( 1989 = 3^{2} \cdot 13 \cdot 17 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 49725h
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 3315c3, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{15}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{195}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{13}, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.62555444640000.81 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.560701440000.3 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.16014193827840000.138 | \(\Z/8\Z\) | not in database |
| $8$ | 8.2.2854069171875.1 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | add | add | ord | ord | nonsplit | split | ss | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 7 | - | - | 1 | 1 | 1 | 2 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 0 | - | - | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.