Properties

Label 49725.k
Number of curves $4$
Conductor $49725$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 49725.k have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 49725.k do not have complex multiplication.

Modular form 49725.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 4 q^{7} + 3 q^{8} + 4 q^{11} - q^{13} - 4 q^{14} - q^{16} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 49725.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
49725.k1 49725f4 \([1, -1, 1, -235355, 44001272]\) \(126574061279329/16286595\) \(185514496171875\) \([2]\) \(344064\) \(1.7590\)  
49725.k2 49725f2 \([1, -1, 1, -15980, 565022]\) \(39616946929/10989225\) \(125174141015625\) \([2, 2]\) \(172032\) \(1.4124\)  
49725.k3 49725f1 \([1, -1, 1, -5855, -163978]\) \(1948441249/89505\) \(1019517890625\) \([2]\) \(86016\) \(1.0658\) \(\Gamma_0(N)\)-optimal
49725.k4 49725f3 \([1, -1, 1, 41395, 3663272]\) \(688699320191/910381875\) \(-10369818544921875\) \([2]\) \(344064\) \(1.7590\)