Properties

Label 49686ck
Number of curves $2$
Conductor $49686$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ck1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 49686ck have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 49686ck do not have complex multiplication.

Modular form 49686.2.a.ck

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + 3 q^{5} - q^{6} + q^{8} + q^{9} + 3 q^{10} - 6 q^{11} - q^{12} - 3 q^{15} + q^{16} + 3 q^{17} + q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 49686ck

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
49686.cn1 49686ck1 \([1, 1, 1, -3039, -114171]\) \(-156116857/186624\) \(-3710585458944\) \([]\) \(138240\) \(1.1057\) \(\Gamma_0(N)\)-optimal
49686.cn2 49686ck2 \([1, 1, 1, 25626, 2121699]\) \(93603087383/150994944\) \(-3002184304164864\) \([]\) \(414720\) \(1.6550\)