Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-1100x+70000\) | (homogenize, simplify) | 
| \(y^2z=x^3-1100xz^2+70000z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-1100x+70000\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(40, 300)$ | $1.9828580676433253914100133855$ | $\infty$ | 
| $(-50, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-50, 0\right) \), \((40,\pm 300)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 49600 \) | = | $2^{6} \cdot 5^{2} \cdot 31$ |  | 
| Discriminant: | $\Delta$ | = | $-2031616000000$ | = | $-1 \cdot 2^{22} \cdot 5^{6} \cdot 31 $ |  | 
| j-invariant: | $j$ | = | \( -\frac{35937}{496} \) | = | $-1 \cdot 2^{-4} \cdot 3^{3} \cdot 11^{3} \cdot 31^{-1}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0432148609779883149711762524$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.80122486607897983645505159640$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.9309010010327436$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.3145105523273126$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.9828580676433253914100133855$ |  | 
| Real period: | $\Omega$ | ≈ | $0.70122916423646541990249172617$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2^{2}\cdot1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $5.5617516222922475198829549961 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 5.561751622 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.701229 \cdot 1.982858 \cdot 16}{2^2} \\ & \approx 5.561751622\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 49152 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{12}^{*}$ | additive | 1 | 6 | 22 | 4 | 
| $5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 | 
| $31$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 8.12.0.9 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1240 = 2^{3} \cdot 5 \cdot 31 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 743 & 0 \\ 0 & 1239 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 841 & 840 \\ 230 & 351 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 1233 & 8 \\ 1232 & 9 \end{array}\right),\left(\begin{array}{rr} 829 & 90 \\ 150 & 29 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1234 & 1235 \end{array}\right),\left(\begin{array}{rr} 1016 & 995 \\ 325 & 746 \end{array}\right)$.
The torsion field $K:=\Q(E[1240])$ is a degree-$13713408000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 775 = 5^{2} \cdot 31 \) | 
| $5$ | additive | $14$ | \( 1984 = 2^{6} \cdot 31 \) | 
| $31$ | nonsplit multiplicative | $32$ | \( 1600 = 2^{6} \cdot 5^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 49600a
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 62a1, its twist by $40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-31}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{10}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-310}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{10}, \sqrt{-31})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.9088037693440000.19 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.4.2460160000.6 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.0.36352150773760000.10 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ss | add | ss | ss | ord | ord | ord | ord | ord | nonsplit | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 3,1 | - | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | 0,0 | - | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
