Properties

Label 4950.t
Number of curves $4$
Conductor $4950$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4950.t have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4950.t do not have complex multiplication.

Modular form 4950.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4 q^{7} - q^{8} - q^{11} + 2 q^{13} - 4 q^{14} + q^{16} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4950.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4950.t1 4950l3 \([1, -1, 0, -360567, -83244159]\) \(455129268177961/4392300\) \(50031042187500\) \([2]\) \(49152\) \(1.7900\)  
4950.t2 4950l2 \([1, -1, 0, -23067, -1231659]\) \(119168121961/10890000\) \(124043906250000\) \([2, 2]\) \(24576\) \(1.4434\)  
4950.t3 4950l1 \([1, -1, 0, -5067, 118341]\) \(1263214441/211200\) \(2405700000000\) \([2]\) \(12288\) \(1.0969\) \(\Gamma_0(N)\)-optimal
4950.t4 4950l4 \([1, -1, 0, 26433, -5835159]\) \(179310732119/1392187500\) \(-15857885742187500\) \([2]\) \(49152\) \(1.7900\)