Properties

Label 4950.c
Number of curves $2$
Conductor $4950$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4950.c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4950.c do not have complex multiplication.

Modular form 4950.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{7} - q^{8} - q^{11} - 5 q^{13} + 2 q^{14} + q^{16} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4950.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4950.c1 4950j2 \([1, -1, 0, -103167, 14116621]\) \(-6663170841705625/850403524608\) \(-15498604235980800\) \([]\) \(38016\) \(1.8404\)  
4950.c2 4950j1 \([1, -1, 0, 8208, -45824]\) \(3355354844375/1987172352\) \(-36216216115200\) \([]\) \(12672\) \(1.2911\) \(\Gamma_0(N)\)-optimal