Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-38494130x+91935940997\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-38494130xz^2+91935940997z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-615906075x+5883284317750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(4233, 67345)$ | $5.7593974945483251408726544835$ | $\infty$ |
| $(14331/4, -14335/8)$ | $0$ | $2$ |
Integral points
\( \left(4233, 67345\right) \), \( \left(4233, -71579\right) \)
Invariants
| Conductor: | $N$ | = | \( 4950 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $142720971679687500$ | = | $2^{2} \cdot 3^{12} \cdot 5^{14} \cdot 11 $ |
|
| j-invariant: | $j$ | = | \( \frac{553808571467029327441}{12529687500} \) | = | $2^{-2} \cdot 3^{-6} \cdot 5^{-8} \cdot 11^{-1} \cdot 23^{3} \cdot 357047^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8157847241240352837965587579$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4617596235729302507985564728$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.047398607062714$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.524459510729422$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.7593974945483251408726544835$ |
|
| Real period: | $\Omega$ | ≈ | $0.23645555786041191762194808580$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.4473661900531317089340588506 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.447366190 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.236456 \cdot 5.759397 \cdot 16}{2^2} \\ & \approx 5.447366190\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 294912 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $3$ | $2$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
| $5$ | $4$ | $I_{8}^{*}$ | additive | 1 | 2 | 14 | 8 |
| $11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.24.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 16 \\ 404 & 345 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 2542 & 2627 \end{array}\right),\left(\begin{array}{rr} 2318 & 661 \\ 409 & 1330 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1583 & 2624 \\ 2104 & 2511 \end{array}\right),\left(\begin{array}{rr} 1688 & 1 \\ 2479 & 10 \end{array}\right),\left(\begin{array}{rr} 1747 & 2624 \\ 1136 & 315 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 2636 & 2637 \end{array}\right),\left(\begin{array}{rr} 2625 & 16 \\ 2624 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[2640])$ is a degree-$38928384000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \) |
| $3$ | additive | $6$ | \( 550 = 2 \cdot 5^{2} \cdot 11 \) |
| $5$ | additive | $18$ | \( 198 = 2 \cdot 3^{2} \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 4950.bg
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 330.d1, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{11}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{15}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{165}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{11}, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{6}, \sqrt{10})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{15}, \sqrt{66})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.367350888960000.61 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.367350888960000.49 | \(\Z/8\Z\) | not in database |
| $8$ | 8.8.48575324160000.12 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/16\Z\) | not in database |
| $8$ | 8.2.8004966750000.10 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | add | ss | nonsplit | ord | ord | ord | ss | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | - | - | 1,1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | - | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.