Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-5198153x+4553265737\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-5198153xz^2+4553265737z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-83170443x+291325836742\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(5067/4, -5071/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 494190 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 17^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $38113559376966000000$ | = | $2^{7} \cdot 3^{7} \cdot 5^{6} \cdot 17^{6} \cdot 19^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{882774443450089}{2166000000} \) | = | $2^{-7} \cdot 3^{-1} \cdot 5^{-6} \cdot 19^{-2} \cdot 95929^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6354298808489260862417641911$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.66951706448676320041937426370$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9826442954534543$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.424260622976699$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.20556697727413432325129843453$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 112 $ = $ 7\cdot2\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $5.7558753636757610510363561669 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 5.755875364 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.205567 \cdot 1.000000 \cdot 112}{2^2} \\ & \approx 5.755875364\end{aligned}$$
Modular invariants
Modular form 494190.2.a.eb
For more coefficients, see the Downloads section to the right.
Modular degree: | 26492928 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$5$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$19$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2277 & 4 \\ 2276 & 5 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 1139 & 0 \end{array}\right),\left(\begin{array}{rr} 457 & 4 \\ 914 & 9 \end{array}\right),\left(\begin{array}{rr} 1522 & 1 \\ 1519 & 0 \end{array}\right),\left(\begin{array}{rr} 1921 & 4 \\ 1562 & 9 \end{array}\right),\left(\begin{array}{rr} 1996 & 289 \\ 1425 & 856 \end{array}\right)$.
The torsion field $K:=\Q(E[2280])$ is a degree-$363095654400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 2601 = 3^{2} \cdot 17^{2} \) |
$3$ | additive | $8$ | \( 10982 = 2 \cdot 17^{2} \cdot 19 \) |
$5$ | nonsplit multiplicative | $6$ | \( 98838 = 2 \cdot 3^{2} \cdot 17^{2} \cdot 19 \) |
$7$ | good | $2$ | \( 247095 = 3^{2} \cdot 5 \cdot 17^{2} \cdot 19 \) |
$17$ | additive | $146$ | \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 26010 = 2 \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 494190.eb
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 570.a1, its twist by $-51$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.