Show commands: SageMath
Rank
The elliptic curves in class 493680cf have rank \(1\).
Complex multiplication
The elliptic curves in class 493680cf do not have complex multiplication.Modular form 493680.2.a.cf
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 493680cf
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 493680.cf8 | 493680cf1 | \([0, -1, 0, 83969120, -125343545600]\) | \(9023321954633914439/6156756739584000\) | \(-44675359237464762875904000\) | \([2]\) | \(159252480\) | \(3.6104\) | \(\Gamma_0(N)\)-optimal* |
| 493680.cf7 | 493680cf2 | \([0, -1, 0, -367660960, -1045584996608]\) | \(757443433548897303481/373234243041000000\) | \(2708304809312079876096000000\) | \([2, 2]\) | \(318504960\) | \(3.9570\) | \(\Gamma_0(N)\)-optimal* |
| 493680.cf6 | 493680cf3 | \([0, -1, 0, -1511633680, -23172506384960]\) | \(-52643812360427830814761/1504091705903677440\) | \(-10914161486243531609226608640\) | \([2]\) | \(477757440\) | \(4.1597\) | |
| 493680.cf5 | 493680cf4 | \([0, -1, 0, -3150622240, 67341792313600]\) | \(476646772170172569823801/5862293314453125000\) | \(42538640205602376000000000000\) | \([4]\) | \(637009920\) | \(4.3036\) | \(\Gamma_0(N)\)-optimal* |
| 493680.cf4 | 493680cf5 | \([0, -1, 0, -4810780960, -128335641252608]\) | \(1696892787277117093383481/1440538624914939000\) | \(10453000384073458687094784000\) | \([2]\) | \(637009920\) | \(4.3036\) | |
| 493680.cf3 | 493680cf6 | \([0, -1, 0, -24349618960, -1462458879507008]\) | \(220031146443748723000125481/172266701724057600\) | \(1250021254647698251422105600\) | \([2, 2]\) | \(955514880\) | \(4.5063\) | |
| 493680.cf2 | 493680cf7 | \([0, -1, 0, -24513172240, -1441816231246400]\) | \(224494757451893010998773801/6152490825146276160000\) | \(44644404423421796926610472960000\) | \([4]\) | \(1911029760\) | \(4.8529\) | |
| 493680.cf1 | 493680cf8 | \([0, -1, 0, -389593830160, -93597794815343168]\) | \(901247067798311192691198986281/552431869440\) | \(4008619028713454960640\) | \([2]\) | \(1911029760\) | \(4.8529\) |