Properties

Label 490776bv
Number of curves $2$
Conductor $490776$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 490776bv have rank \(1\).

Complex multiplication

The elliptic curves in class 490776bv do not have complex multiplication.

Modular form 490776.2.a.bv

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 4 q^{5} + 2 q^{7} + q^{9} - 4 q^{15} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 490776bv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
490776.bv2 490776bv1 \([0, 1, 0, -42995, -3305106]\) \(141150208/6561\) \(408579138416592\) \([2]\) \(3225600\) \(1.5649\) \(\Gamma_0(N)\)-optimal
490776.bv1 490776bv2 \([0, 1, 0, -680060, -216084816]\) \(34909201168/81\) \(80706990304512\) \([2]\) \(6451200\) \(1.9114\)