Show commands: SageMath
Rank
The elliptic curves in class 48960.p have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 48960.p do not have complex multiplication.Modular form 48960.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 48960.p
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 48960.p1 | 48960ej3 | \([0, 0, 0, -2401068, -281682992]\) | \(8010684753304969/4456448000000\) | \(851640475189248000000\) | \([2]\) | \(2211840\) | \(2.7065\) | |
| 48960.p2 | 48960ej1 | \([0, 0, 0, -1470828, 686569552]\) | \(1841373668746009/31443200\) | \(6008889094963200\) | \([2]\) | \(737280\) | \(2.1572\) | \(\Gamma_0(N)\)-optimal |
| 48960.p3 | 48960ej2 | \([0, 0, 0, -1424748, 731598928]\) | \(-1673672305534489/241375690000\) | \(-46127612693053440000\) | \([2]\) | \(1474560\) | \(2.5038\) | |
| 48960.p4 | 48960ej4 | \([0, 0, 0, 9395412, -2230461488]\) | \(479958568556831351/289000000000000\) | \(-55228760064000000000000\) | \([2]\) | \(4423680\) | \(3.0531\) |