Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-17388x+882512\)
|
(homogenize, simplify) |
\(y^2z=x^3-17388xz^2+882512z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-17388x+882512\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(74, 32)$ | $0.59914595098970621033806809155$ | $\infty$ |
$(-22, 1120)$ | $2.7102591777614374604496930437$ | $\infty$ |
$(76, 0)$ | $0$ | $2$ |
Integral points
\((-59,\pm 1305)\), \((-22,\pm 1120)\), \((16,\pm 780)\), \((74,\pm 32)\), \( \left(76, 0\right) \), \((77,\pm 13)\), \((92,\pm 248)\), \((106,\pm 480)\), \((2506,\pm 125280)\)
Invariants
Conductor: | $N$ | = | \( 48960 \) | = | $2^{6} \cdot 3^{2} \cdot 5 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $3008102400$ | = | $2^{18} \cdot 3^{3} \cdot 5^{2} \cdot 17 $ |
|
j-invariant: | $j$ | = | \( \frac{82142689923}{425} \) | = | $3^{9} \cdot 5^{-2} \cdot 7^{3} \cdot 17^{-1} \cdot 23^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0154346525344251923866482509$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.29893919047252019458801124052$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9821052618318376$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.787862116631823$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.5909348837956411012285419479$ |
|
Real period: | $\Omega$ | ≈ | $1.2624883436843158189432762420$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.0341469854110335696110294064 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.034146985 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.262488 \cdot 1.590935 \cdot 16}{2^2} \\ & \approx 8.034146985\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 65536 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{8}^{*}$ | additive | -1 | 6 | 18 | 0 |
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$17$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1020 = 2^{2} \cdot 3 \cdot 5 \cdot 17 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 256 & 769 \\ 765 & 256 \end{array}\right),\left(\begin{array}{rr} 817 & 4 \\ 614 & 9 \end{array}\right),\left(\begin{array}{rr} 1017 & 4 \\ 1016 & 5 \end{array}\right),\left(\begin{array}{rr} 482 & 1 \\ 779 & 0 \end{array}\right),\left(\begin{array}{rr} 344 & 1 \\ 679 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[1020])$ is a degree-$14438891520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1020\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 51 = 3 \cdot 17 \) |
$3$ | additive | $6$ | \( 5440 = 2^{6} \cdot 5 \cdot 17 \) |
$5$ | nonsplit multiplicative | $6$ | \( 9792 = 2^{6} \cdot 3^{2} \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 48960.c
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 765.b1, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{51}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.734400.2 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2493923696640000.12 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | ord | ord | ord | nonsplit | ss | ss | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | - | 2 | 2 | 2 | 2 | 2 | 2,2 | 2,2 | 2 | 2 | 2 | 2 | 2 | 2,2 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.