Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-14778208x-21064854412\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-14778208xz^2-21064854412z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1197034875x-15352687761750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-1862, 0)$ | $0$ | $2$ |
Integral points
\( \left(-1862, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 488400 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $14958682051940352000000$ | = | $2^{18} \cdot 3^{11} \cdot 5^{6} \cdot 11 \cdot 37^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{5577108481460841625}{233729407061568} \) | = | $2^{-6} \cdot 3^{-11} \cdot 5^{3} \cdot 11^{-1} \cdot 37^{-4} \cdot 354677^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0197584445772689191627055698$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5218923078002734224450937817$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9869944369461394$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.667540201114429$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.077199828330170529406270316510$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 176 $ = $ 2^{2}\cdot11\cdot2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $3.3967924465275032938758939265 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.396792447 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.077200 \cdot 1.000000 \cdot 176}{2^2} \\ & \approx 3.396792447\end{aligned}$$
Modular invariants
Modular form 488400.2.a.fm
For more coefficients, see the Downloads section to the right.
| Modular degree: | 43794432 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{10}^{*}$ | additive | -1 | 4 | 18 | 6 |
| $3$ | $11$ | $I_{11}$ | split multiplicative | -1 | 1 | 11 | 11 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $37$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 178 & 1 \\ 175 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 26 & 1 \\ 119 & 0 \end{array}\right),\left(\begin{array}{rr} 261 & 4 \\ 260 & 5 \end{array}\right),\left(\begin{array}{rr} 169 & 100 \\ 32 & 231 \end{array}\right),\left(\begin{array}{rr} 133 & 4 \\ 2 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$81100800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
| $3$ | split multiplicative | $4$ | \( 162800 = 2^{4} \cdot 5^{2} \cdot 11 \cdot 37 \) |
| $5$ | additive | $14$ | \( 19536 = 2^{4} \cdot 3 \cdot 11 \cdot 37 \) |
| $11$ | split multiplicative | $12$ | \( 14800 = 2^{4} \cdot 5^{2} \cdot 37 \) |
| $37$ | nonsplit multiplicative | $38$ | \( 13200 = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 488400.fm
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 2442.f1, its twist by $-20$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.