Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-14088756x-20347263200\)
|
(homogenize, simplify) |
\(y^2z=x^3-14088756xz^2-20347263200z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-14088756x-20347263200\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2393182/441, 2324673296/9261)$ | $11.586495010587203496953035754$ | $\infty$ |
$(-2200, 0)$ | $0$ | $2$ |
$(4334, 0)$ | $0$ | $2$ |
Integral points
\( \left(-2200, 0\right) \), \( \left(-2134, 0\right) \), \( \left(4334, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 487872 \) | = | $2^{6} \cdot 3^{2} \cdot 7 \cdot 11^{2}$ |
|
Discriminant: | $\Delta$ | = | $124481879374109773824$ | = | $2^{12} \cdot 3^{10} \cdot 7^{4} \cdot 11^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{58465284603328}{23532201} \) | = | $2^{6} \cdot 3^{-4} \cdot 7^{-4} \cdot 11^{-2} \cdot 31^{3} \cdot 313^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8192767776508063244279014549$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.37787581635762089728207492600$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0282813810091789$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.656982614885223$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $11.586495010587203496953035754$ |
|
Real period: | $\Omega$ | ≈ | $0.077927704515550999875329095039$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.2232716764475643844565248309 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.223271676 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.077928 \cdot 11.586495 \cdot 128}{4^2} \\ & \approx 7.223271676\end{aligned}$$
Modular invariants
Modular form 487872.2.a.dv
For more coefficients, see the Downloads section to the right.
Modular degree: | 19660800 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{2}^{*}$ | additive | 1 | 6 | 12 | 0 |
$3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
$7$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$11$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.12.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 175 & 0 \\ 0 & 263 \end{array}\right),\left(\begin{array}{rr} 131 & 174 \\ 0 & 263 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 261 & 4 \\ 260 & 5 \end{array}\right),\left(\begin{array}{rr} 119 & 84 \\ 150 & 167 \end{array}\right),\left(\begin{array}{rr} 199 & 90 \\ 222 & 181 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$20275200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1089 = 3^{2} \cdot 11^{2} \) |
$3$ | additive | $8$ | \( 54208 = 2^{6} \cdot 7 \cdot 11^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 69696 = 2^{6} \cdot 3^{2} \cdot 11^{2} \) |
$11$ | additive | $72$ | \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 487872.dv
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 7392.c3, its twist by $264$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.