Properties

Label 487872.dv
Number of curves $4$
Conductor $487872$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 487872.dv have rank \(1\).

Complex multiplication

The elliptic curves in class 487872.dv do not have complex multiplication.

Modular form 487872.2.a.dv

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - q^{7} + 2 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 487872.dv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
487872.dv1 487872dv4 \([0, 0, 0, -225398316, -1302489149456]\) \(29925549856274696/4851\) \(205288607502139392\) \([2]\) \(39321600\) \(3.1659\)  
487872.dv2 487872dv2 \([0, 0, 0, -14088756, -20347263200]\) \(58465284603328/23532201\) \(124481879374109773824\) \([2, 2]\) \(19660800\) \(2.8193\)  
487872.dv3 487872dv3 \([0, 0, 0, -11954316, -26724116144]\) \(-4464412682696/4706920449\) \(-199191330570718349918208\) \([2]\) \(39321600\) \(3.1659\)  
487872.dv4 487872dv1 \([0, 0, 0, -1015311, -214157900]\) \(1400416996672/570715299\) \(47171873796912494784\) \([2]\) \(9830400\) \(2.4727\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 487872.dv1.