Properties

Label 487305.cx
Number of curves $4$
Conductor $487305$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 487305.cx have rank \(0\).

Complex multiplication

The elliptic curves in class 487305.cx do not have complex multiplication.

Modular form 487305.2.a.cx

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} - 3 q^{8} - q^{10} - q^{13} - q^{16} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 487305.cx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
487305.cx1 487305cx4 \([1, -1, 0, -6882255, -6947627324]\) \(420339554066191969/244298925\) \(20952571161719925\) \([2]\) \(9437184\) \(2.4564\)  
487305.cx2 487305cx2 \([1, -1, 0, -432630, -107155049]\) \(104413920565969/2472575625\) \(212063220235400625\) \([2, 2]\) \(4718592\) \(2.1098\)  
487305.cx3 487305cx1 \([1, -1, 0, -59985, 3222400]\) \(278317173889/109245825\) \(9369590645694825\) \([2]\) \(2359296\) \(1.7633\) \(\Gamma_0(N)\)-optimal*
487305.cx4 487305cx3 \([1, -1, 0, 54675, -335311250]\) \(210751100351/566398828125\) \(-48577830427226953125\) \([2]\) \(9437184\) \(2.4564\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 487305.cx1.