Properties

Label 486720op
Number of curves $4$
Conductor $486720$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("op1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 486720op have rank \(0\).

Complex multiplication

The elliptic curves in class 486720op do not have complex multiplication.

Modular form 486720.2.a.op

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 2 q^{7} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 486720op

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
486720.op3 486720op1 \([0, 0, 0, -586092, 1108588624]\) \(-24137569/561600\) \(-518029704213980774400\) \([2]\) \(12386304\) \(2.6554\) \(\Gamma_0(N)\)-optimal*
486720.op2 486720op2 \([0, 0, 0, -20054892, 34415811664]\) \(967068262369/4928040\) \(4545710654477681295360\) \([2]\) \(24772608\) \(3.0020\) \(\Gamma_0(N)\)-optimal*
486720.op4 486720op3 \([0, 0, 0, 5254548, -29293110704]\) \(17394111071/411937500\) \(-379978385469456384000000\) \([2]\) \(37158912\) \(3.2048\)  
486720.op1 486720op4 \([0, 0, 0, -116425452, -458920854704]\) \(189208196468929/10860320250\) \(10017750154516748107776000\) \([2]\) \(74317824\) \(3.5513\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 486720op1.