Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-714993708x-7207366029968\)
|
(homogenize, simplify) |
\(y^2z=x^3-714993708xz^2-7207366029968z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-714993708x-7207366029968\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(38196365075144/1141155961, 97222485252771576972/38549389518541)$ | $29.859848236796704427864172800$ | $\infty$ |
$(-17212, 0)$ | $0$ | $2$ |
Integral points
\( \left(-17212, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 486720 \) | = | $2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $952312374063748366995456000$ | = | $2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 13^{14} $ |
|
j-invariant: | $j$ | = | \( \frac{350584567631475848}{8259273550125} \) | = | $2^{3} \cdot 3^{-4} \cdot 5^{-3} \cdot 11^{3} \cdot 13^{-8} \cdot 32051^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.9621459358973783455694279963$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.2639311371326234950735215052$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0116459533211948$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.557425493457794$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $29.859848236796704427864172800$ |
|
Real period: | $\Omega$ | ≈ | $0.029237972054994830898575640801$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.9843312665107897455514837785 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.984331267 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.029238 \cdot 29.859848 \cdot 32}{2^2} \\ & \approx 6.984331267\end{aligned}$$
Modular invariants
Modular form 486720.2.a.s
For more coefficients, see the Downloads section to the right.
Modular degree: | 264241152 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{5}^{*}$ | additive | -1 | 6 | 15 | 0 |
$3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
$5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$13$ | $4$ | $I_{8}^{*}$ | additive | 1 | 2 | 14 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.10 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 1039 & 0 \\ 0 & 3119 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 166 \\ 2834 & 3075 \end{array}\right),\left(\begin{array}{rr} 2852 & 771 \\ 2577 & 494 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 8 & 65 \end{array}\right),\left(\begin{array}{rr} 479 & 2064 \\ 1752 & 911 \end{array}\right),\left(\begin{array}{rr} 1678 & 3 \\ 1341 & 1060 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 787 & 270 \\ 2184 & 613 \end{array}\right),\left(\begin{array}{rr} 3105 & 16 \\ 3104 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[3120])$ is a degree-$77290536960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \) |
$3$ | additive | $8$ | \( 10816 = 2^{6} \cdot 13^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 97344 = 2^{6} \cdot 3^{2} \cdot 13^{2} \) |
$13$ | additive | $98$ | \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 486720.s
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 6240.p2, its twist by $-312$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.