Properties

Label 486720.pf
Number of curves $2$
Conductor $486720$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("pf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 486720.pf have rank \(1\).

Complex multiplication

The elliptic curves in class 486720.pf do not have complex multiplication.

Modular form 486720.2.a.pf

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 2 q^{7} + 6 q^{11} + 2 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 486720.pf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
486720.pf1 486720pf1 \([0, 0, 0, -494832, -12848056]\) \(3718856704/2132325\) \(7683179817138508800\) \([2]\) \(8257536\) \(2.3135\) \(\Gamma_0(N)\)-optimal
486720.pf2 486720pf2 \([0, 0, 0, 1969188, -102538384]\) \(14647977776/8555625\) \(-493241173445928960000\) \([2]\) \(16515072\) \(2.6600\)