Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3+1026168x+26697944\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3+1026168xz^2+26697944z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3+1026168x+26697944\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-26, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-26, 0\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 486720 \) | = | $2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $-69464798593634995200$ | = | $-1 \cdot 2^{10} \cdot 3^{9} \cdot 5^{2} \cdot 13^{10} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{33165879296}{19278675} \) | = | $2^{11} \cdot 3^{-3} \cdot 5^{-2} \cdot 11^{3} \cdot 13^{-4} \cdot 23^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4967233592904944976887317678$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.087319885759050192783338660674$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $1.1890414977460546$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.05771869711947$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 0$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.11749507561272815661430707195$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2^{2}\cdot2\cdot2^{2} $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L(E,1)$ | ≈ | $1.8799212098036505058289131512 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | 
     | 
        
BSD formula
$$\begin{aligned} 1.879921210 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.117495 \cdot 1.000000 \cdot 64}{2^2} \\ & \approx 1.879921210\end{aligned}$$
Modular invariants
Modular form 486720.2.a.mu
For more coefficients, see the Downloads section to the right.
| Modular degree: | 8257536 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_0^{*}$ | additive | -1 | 6 | 10 | 0 | 
| $3$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 | 
| $5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
| $13$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 8.12.0.13 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 312 = 2^{3} \cdot 3 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 306 & 307 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 34 & 193 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 100 & 311 \\ 185 & 306 \end{array}\right),\left(\begin{array}{rr} 269 & 270 \\ 182 & 29 \end{array}\right),\left(\begin{array}{rr} 305 & 8 \\ 304 & 9 \end{array}\right),\left(\begin{array}{rr} 167 & 304 \\ 44 & 279 \end{array}\right)$.
The torsion field $K:=\Q(E[312])$ is a degree-$40255488$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/312\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 1521 = 3^{2} \cdot 13^{2} \) | 
| $3$ | additive | $6$ | \( 54080 = 2^{6} \cdot 5 \cdot 13^{2} \) | 
| $5$ | split multiplicative | $6$ | \( 97344 = 2^{6} \cdot 3^{2} \cdot 13^{2} \) | 
| $13$ | additive | $98$ | \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 486720.mu
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1560.a4, its twist by $312$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.