Properties

Label 486720.ft
Number of curves $2$
Conductor $486720$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ft1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 486720.ft have rank \(1\).

Complex multiplication

The elliptic curves in class 486720.ft do not have complex multiplication.

Modular form 486720.2.a.ft

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 2 q^{7} - 4 q^{11} - 4 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 486720.ft

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
486720.ft1 486720ft1 \([0, 0, 0, -14703, 623948]\) \(42144192/4225\) \(35239567147200\) \([2]\) \(1032192\) \(1.3357\) \(\Gamma_0(N)\)-optimal
486720.ft2 486720ft2 \([0, 0, 0, 18252, 3023072]\) \(1259712/8125\) \(-4337177495040000\) \([2]\) \(2064384\) \(1.6823\)