Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-508177696x+4267103178496\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-508177696xz^2+4267103178496z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-41162393403x+3110594729943402\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(11056, 0)$ | $0$ | $2$ |
| $(14881, 0)$ | $0$ | $2$ |
Integral points
\( \left(-25936, 0\right) \), \( \left(11056, 0\right) \), \( \left(14881, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 485520 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $533679657976196877680640000$ | = | $2^{18} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} \cdot 17^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{146796951366228945601}{5397929064360000} \) | = | $2^{-6} \cdot 3^{-4} \cdot 5^{-4} \cdot 7^{-8} \cdot 17^{-2} \cdot 37^{3} \cdot 142573^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.8978391793981313168374326668$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.7880853268100779672954332364$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9912852432443917$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.480238378663334$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.051649122660546353890405723699$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{2}\cdot2\cdot2\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.6527719251374833244929831584 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 1.652771925 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.051649 \cdot 1.000000 \cdot 128}{4^2} \\ & \approx 1.652771925\end{aligned}$$
Modular invariants
Modular form 485520.2.a.bg
For more coefficients, see the Downloads section to the right.
| Modular degree: | 254803968 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 4 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{10}^{*}$ | additive | -1 | 4 | 18 | 6 |
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $7$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
| $17$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.48.0.84 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 5 & 4 \\ 2036 & 2037 \end{array}\right),\left(\begin{array}{rr} 2039 & 502 \\ 0 & 1529 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 353 & 2038 \\ 258 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 518 \\ 502 & 2019 \end{array}\right),\left(\begin{array}{rr} 2033 & 8 \\ 2032 & 9 \end{array}\right),\left(\begin{array}{rr} 1361 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 817 & 4 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[2040])$ is a degree-$14438891520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 289 = 17^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 161840 = 2^{4} \cdot 5 \cdot 7 \cdot 17^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 97104 = 2^{4} \cdot 3 \cdot 7 \cdot 17^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 69360 = 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
| $17$ | additive | $162$ | \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 485520bg
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 3570t3, its twist by $-68$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.