Properties

Label 48552.x
Number of curves $1$
Conductor $48552$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 48552.x1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48552.x do not have complex multiplication.

Modular form 48552.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{7} + q^{9} + 4 q^{11} + 4 q^{13} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 48552.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48552.x1 48552t1 \([0, 1, 0, -8188, -2697055]\) \(-544000/27783\) \(-3100919503732848\) \([]\) \(176256\) \(1.6525\) \(\Gamma_0(N)\)-optimal