Properties

Label 48552.w
Number of curves $1$
Conductor $48552$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 48552.w1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48552.w do not have complex multiplication.

Modular form 48552.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} + 4 q^{11} + 2 q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 48552.w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48552.w1 48552r1 \([0, 1, 0, -48648, -4148991]\) \(-9528223648000/7411887\) \(-9904771426032\) \([]\) \(133056\) \(1.4251\) \(\Gamma_0(N)\)-optimal