Properties

Label 48552.t
Number of curves $4$
Conductor $48552$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 48552.t have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48552.t do not have complex multiplication.

Modular form 48552.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - q^{7} + q^{9} + 4 q^{11} + 2 q^{13} - 2 q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 48552.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48552.t1 48552bc4 \([0, 1, 0, -633584, -194288160]\) \(569001644066/122451\) \(6053211057395712\) \([2]\) \(442368\) \(2.0230\)  
48552.t2 48552bc3 \([0, 1, 0, -286784, 57294432]\) \(52767497666/1753941\) \(86703865670510592\) \([2]\) \(442368\) \(2.0230\)  
48552.t3 48552bc2 \([0, 1, 0, -44024, -2327424]\) \(381775972/127449\) \(3150140448236544\) \([2, 2]\) \(221184\) \(1.6765\)  
48552.t4 48552bc1 \([0, 1, 0, 7996, -246624]\) \(9148592/9639\) \(-59561479063296\) \([4]\) \(110592\) \(1.3299\) \(\Gamma_0(N)\)-optimal