Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3-4557x-214461\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3-4557xz^2-214461z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-72912x-13725488\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(2486169/28900, 850802697/4913000)$ | $13.202029789822232847435750753$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 4851 \) | = | $3^{2} \cdot 7^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-13812719553171$ | = | $-1 \cdot 3^{6} \cdot 7^{6} \cdot 11^{5} $ |
|
| j-invariant: | $j$ | = | \( -\frac{122023936}{161051} \) | = | $-1 \cdot 2^{12} \cdot 11^{-5} \cdot 31^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2142513777433084335612847287$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.30800984111840306468901426148$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.012998630378065$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.486294106755062$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $13.202029789822232847435750753$ |
|
| Real period: | $\Omega$ | ≈ | $0.27696417664777584386522770385$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.3129786216350477898122960883 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.312978622 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.276964 \cdot 13.202030 \cdot 2}{1^2} \\ & \approx 7.312978622\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 10800 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $11$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $5$ | 5Cs.4.1 | 5.60.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 11550 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \), index $1200$, genus $37$, and generators
$\left(\begin{array}{rr} 9451 & 10500 \\ 6804 & 8527 \end{array}\right),\left(\begin{array}{rr} 16 & 35 \\ 1765 & 3861 \end{array}\right),\left(\begin{array}{rr} 7699 & 0 \\ 0 & 11549 \end{array}\right),\left(\begin{array}{rr} 1649 & 0 \\ 0 & 11549 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 10 & 501 \end{array}\right),\left(\begin{array}{rr} 5881 & 10500 \\ 11235 & 8821 \end{array}\right),\left(\begin{array}{rr} 11501 & 50 \\ 11500 & 51 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 50 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[11550])$ is a degree-$1916006400000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/11550\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | additive | $6$ | \( 539 = 7^{2} \cdot 11 \) |
| $5$ | good | $2$ | \( 441 = 3^{2} \cdot 7^{2} \) |
| $7$ | additive | $26$ | \( 99 = 3^{2} \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 441 = 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 4851l
consists of 3 curves linked by isogenies of
degrees dividing 25.
Twists
The minimal quadratic twist of this elliptic curve is 11a1, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{21}) \) | \(\Z/5\Z\) | 2.2.21.1-121.1-b2 |
| $3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
| $4$ | 4.0.55125.1 | \(\Z/5\Z\) | not in database |
| $6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.17929296.1 | \(\Z/10\Z\) | not in database |
| $8$ | 8.2.76879700667.4 | \(\Z/3\Z\) | not in database |
| $8$ | 8.0.3038765625.3 | \(\Z/5\Z \oplus \Z/5\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/10\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
| $16$ | deg 16 | \(\Z/15\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | add | ord | add | nonsplit | ord | ord | ss | ord | ss | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 4,5 | - | 5 | - | 1 | 1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0,0 | - | 1 | - | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.