Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-9218977x-390057607775\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-9218977xz^2-390057607775z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-746737164x-284354236279440\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(7727, 0)$ | $0$ | $2$ |
Integral points
\( \left(7727, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 485184 \) | = | $2^{6} \cdot 3 \cdot 7 \cdot 19^{2}$ |
|
Discriminant: | $\Delta$ | = | $-65677503515122815183028224$ | = | $-1 \cdot 2^{16} \cdot 3^{4} \cdot 7^{12} \cdot 19^{7} $ |
|
j-invariant: | $j$ | = | \( -\frac{28104147578308}{21301741002339} \) | = | $-1 \cdot 2^{2} \cdot 3^{-4} \cdot 7^{-12} \cdot 19^{-1} \cdot 107^{3} \cdot 179^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.6329471525156740896662170088$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.2365314221858601137720604642$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0526082543070654$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.110054480118013$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.027911055168775145208086681071$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.22328844135020116166469344857 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.223288441 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.027911 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 0.223288441\end{aligned}$$
Modular invariants
Modular form 485184.2.a.do
For more coefficients, see the Downloads section to the right.
Modular degree: | 141557760 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{6}^{*}$ | additive | 1 | 6 | 16 | 0 |
$3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
$19$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1064 = 2^{3} \cdot 7 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1057 & 8 \\ 1056 & 9 \end{array}\right),\left(\begin{array}{rr} 220 & 1063 \\ 201 & 1058 \end{array}\right),\left(\begin{array}{rr} 403 & 400 \\ 954 & 405 \end{array}\right),\left(\begin{array}{rr} 913 & 8 \\ 460 & 33 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1058 & 1059 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 661 & 662 \\ 918 & 389 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[1064])$ is a degree-$7942717440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1064\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 361 = 19^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 23104 = 2^{6} \cdot 19^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 69312 = 2^{6} \cdot 3 \cdot 19^{2} \) |
$19$ | additive | $200$ | \( 1344 = 2^{6} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 485184do
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 3192c4, its twist by $-152$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.