Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-183457793x-896140963233\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-183457793xz^2-896140963233z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-14860081260x-653242181953104\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(15529, 0)$ | $0$ | $2$ |
Integral points
\( \left(15529, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 485184 \) | = | $2^{6} \cdot 3 \cdot 7 \cdot 19^{2}$ |
|
Discriminant: | $\Delta$ | = | $48295797942539601149165568$ | = | $2^{20} \cdot 3^{18} \cdot 7 \cdot 19^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{55369510069623625}{3916046302812} \) | = | $2^{-2} \cdot 3^{-18} \cdot 5^{3} \cdot 7^{-1} \cdot 19^{-2} \cdot 31^{3} \cdot 2459^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.6755612077549605088432100047$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1636209473318223147128481066$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9950582420479482$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.247067000228778$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.041204723669168553832907999622$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 288 $ = $ 2^{2}\cdot( 2 \cdot 3^{2} )\cdot1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.9667401041801358759693759728 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.966740104 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.041205 \cdot 1.000000 \cdot 288}{2^2} \\ & \approx 2.966740104\end{aligned}$$
Modular invariants
Modular form 485184.2.a.gv
For more coefficients, see the Downloads section to the right.
Modular degree: | 159252480 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 6 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{10}^{*}$ | additive | 1 | 6 | 20 | 2 |
$3$ | $18$ | $I_{18}$ | split multiplicative | -1 | 1 | 18 | 18 |
$7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$19$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9576 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 19 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 1285 & 36 \\ 786 & 265 \end{array}\right),\left(\begin{array}{rr} 4787 & 0 \\ 0 & 9575 \end{array}\right),\left(\begin{array}{rr} 9043 & 9540 \\ 9034 & 9215 \end{array}\right),\left(\begin{array}{rr} 9541 & 36 \\ 9540 & 37 \end{array}\right),\left(\begin{array}{rr} 7520 & 9567 \\ 6077 & 9398 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 3240 & 6139 \end{array}\right),\left(\begin{array}{rr} 9566 & 9549 \\ 7925 & 6794 \end{array}\right),\left(\begin{array}{rr} 9557 & 9540 \\ 6336 & 8225 \end{array}\right),\left(\begin{array}{rr} 4823 & 9540 \\ 4824 & 9539 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right)$.
The torsion field $K:=\Q(E[9576])$ is a degree-$1715626967040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9576\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 2527 = 7 \cdot 19^{2} \) |
$3$ | split multiplicative | $4$ | \( 161728 = 2^{6} \cdot 7 \cdot 19^{2} \) |
$7$ | split multiplicative | $8$ | \( 69312 = 2^{6} \cdot 3 \cdot 19^{2} \) |
$19$ | additive | $200$ | \( 1344 = 2^{6} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 6, 9 and 18.
Its isogeny class 485184.gv
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 798.d5, its twist by $-152$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.